品牌  【直播】  50强   整机  ​【联盟】  机构  【视界】  展会  招聘  云服务          微博   公众号AIrobot518 
【​今日焦点
【行业动态】
NEWS / 新闻中心
一文读懂机器人“关节”伺服驱动器的前世今生
来源:北京精密 | 作者:北京精密 | 发布时间: 744天前 | 5451 次浏览 | 分享到:
伺服驱动器是实现机器人运动能力的核心部件,在机器人系统中的功能等同于人体的关节组织,因此又被称为“关节驱动器”;此外,它还要承担一部分感知能力,感知外界的力之后再给外界一个力反馈,从而实现柔性控制,确保机器人在外界不断变化的环境中安全、顺畅地工作。


图9 准直驱驱动器


图10 改进版准直驱驱动器

宇树科技提出了一种新的准直驱驱动器结构,在电机基座和内齿圈间增加了离合结构,当外界负载冲击力即将超过减速器零件极限时,离合结构发生作用,外界冲击能量转换成摩擦热量损耗掉,保护减速器不损伤,结构如图11所示。另外,在驱动器的电机端和输出端都设置了位置编码器,电机轴采用中空结构。银弗科技提出了一种紧凑型准直驱驱动器,把四点角接触轴承的滚道直接设置在行星减速器的机架上,减少驱动器的轴向尺寸,减轻重量,具体结构见图12。优必选科技提出一种轴向尺寸紧凑型准直驱驱动器,如图13所示,驱动器的控制板布置在电机下方,第一级行星减速器嵌入电机定子内部,第二级行星减速器设置在电机外部,极大减少驱动器的轴向尺寸。


图11 带离合功能的准直驱驱动器


图12 紧凑的准直驱驱动器


图13 紧凑的准直驱驱动器

2.4 3种驱动器比较

综合以上对刚性驱动器、弹性驱动器和准直驱驱动器的论述,对3种驱动器的结构布局、力矩测量方式、控制特点、功率特点、能量特点、安全性和应用场景等进行比较。

如表2所示,结构布局方面,TSA是常规无刷电机驱动高传动比减速器,直接带动输出端,有些设计在电机端增加刹车,在减速器和输出端增加高刚性力矩传感器;弹性驱动器,SEA是常规无刷电机驱动高传动比减速器,在减速器和输出端间增加弹性体,PEA是在TSA的基础上增加平行的弹性机构,CEA是SEA或PEA的基础上增加弹性体开关机构,MEA上PEA、SEA和CEA的组合;准直驱驱动器是高扭矩密度电机驱动低传动比减速器,输出端具有小惯量特性。力矩测量方面,刚性驱动器是基于电流或应变片式力矩传感器,弹性驱动器是使用编码器原理或应变片式力矩传感器,准直驱驱动器是应用电流环检测。

控制方面,刚性驱动器控制相对简单,精度高,弹性驱动器中SEA控制复杂,精度低,PEA控制相对简单,精度高,CEA控制简单,但精度一般,CMA控制复杂,精度一般;准直驱驱动器控制简单,精度高。功率方面,刚性驱动器无功率调,SEA、PEA、CEA的功率调制性好,MEA功率调制非常好;准直驱驱动器的功率调制较差。能量特性方面,刚性驱动器的效率较低;SEA和PEA的效率一般,CMA、MEA和PA的效率高。安全性方面,刚性驱动器的安全性比较差;SEA和MEA用于有弹性体的保护安全性好,PEA安全性一般,CEA较差;准直驱驱动器由于具有反驱特性,安全性好。


表2 伺服驱动器特性比较

三、驱动器技术难点和发展趋势

双足仿人机器人驱动器经过30多年的发展,经历了从刚性驱动器到弹性驱动器和准直驱驱动器的过程。但目前双足仿人机器人的运动性能还远没有达到人类和动物的水平,驱动器技术还有一些难点需要克服,下一步的发展方向需要深入讨论。

3.1 技术难点

刚性驱动器应用在双足仿人机器人最早,设计理论也相对成熟,在传统的双足机器人、工业机器人、协作机器人和工业精密转台等方面得到广泛应用。但由于电机和减速器功率密度限制,在合适工作区间内的最大输出功率密度只能到200~300W/kg,远没有达到动物肌肉的500W/kg,这就限制其在双足仿人机器人上的应用。另外,刚性驱动器还没有建立标准检测方法和性能评价标准。

弹性驱动器经过多年的发展,取得了许多成果,SEA技术也在一些产品得到应用,如苏黎世理工的四足机器人ANYmal、美国宇航局的Valkyrie和意大利技术研究院COMAN等。但由于弹性体引入,系统为欠驱动,给控制带来了难度,尤其在机器人腿部使用,机器人整机的运动控制比较难实现。PEA、CEA和MEA技术应用于产品的相对较少,PEA很难控制并联弹性体的能量吸收和释放的时机,CEA很好解决串联弹性体何时开关的问题,但增加了辅助控制装置或机构,MEA结构和控制复杂。

准直驱驱动器是最近几年新兴技术,发展迅速,并在多了产品得到应用,如麻省理工的Cheetah、宇树科技的Laikago和云深处科技的绝影等。设计的初衷是提高驱动器的扭矩密度,瞬间响应性和抗冲击能力,同时降低成本,因为只有电机端有位置编码器,这就面临机器人断电了后,驱动器如何回到机械零位的问题。

3.2 发展趋势

研究表明,人类步行、疾跑和跳跃等动作脚底与地面冲击力是自重的3倍以上,双足仿人机器人若要达到近似人类或动物的运动能力,取决于驱动器系统相对于自重或负载的驱动能力,以及在传感系统、控制系统的感知和控制下快速响应能力。另外,还要综合考虑驱动器的能量效率和缓冲冲击能力等。

新设计原理方面,仿生学研究,以鸵鸟、鹌鹑和家禽等动物的腿部骨和骼肌肉为仿生对象,研究新的腿部构型,根据构型需求进而设计驱动器的形式,驱动器结合机器人整机设计、机器人运动控制整体考虑。

现有驱动器方案研究方面,刚性驱动器方向,虽然在人形机器人应用上受到限制,但在工业领域有广泛的应用,亟需建立性能指标的检测方法标准和评价标准,如回差、增速启动转矩、刚性、绝对精度、重复定位精度、效率、速度力矩曲线、扭矩力矩曲线、电流力矩曲线等。弹性驱动器方向,在PEA基础上增加离合装置控制平行弹性体的开关,这样可以控制能量的储存和释放,提高能量利用率,关键是离合装置如何做的简单和节能。

​​​​第六期“全国移动机器人行业巡回调研活动”合作商招募中

​报名热线:400-0756-518​​​​

活动时间:2023-09-01至11-30

  • 寻迹快速交付 兑现品质|航天研究所AMR物流自动化升级项目完美验收~
  • 万集“亮剑”,激光雷达风云再起
  • 云象机器人突破AGV/AMR协同作业难点,稳定适应各类工业场景,持续拓展应用落地
  • 坤厚自动化携手汽配行业领军企业完成仓库自动化改造
  • 十年筑梦,共赢未来 | 2024凯乐士生态合作伙伴大会圆满落幕
  • 普渡机器人出席商用机器人出海论坛,荣获“商用机器人出海先锋Top10”
  • 灵动科技Apex C1500-L智能无人叉车斩获美国MHI 2024创新大奖
  • 今天国际亮相重庆国际电池展CIBF2024,前沿智能装备惊艳全场