​​​​​​​智能装备行业门户网
品牌 活动 访谈】  50强   整机 ​【联盟】 机构 【视界 展会 招聘 云服务   微博     关注公众号
咨询热线400-0756-518
今日焦点
​​​金陵智造AGV舵轮
智慧物流,移动机器人全媒体,为更有效传播
​​​INEWS / 新闻中心
智能制造的核心技术之智能控制
来源:智造苑 | 作者:智造苑 | 发布时间: 1032天前 | 6435 次浏览 | 分享到:
智能控制是控制理论与人工智能的交叉成果,是经典控制理论在现代的进一步发展,其解决问题的能力和适应性相较于经典控制方法有显著提高。由于智能控制是一门新兴学科,正处于发展阶段,因此尚无统一的定义,存在多种描述形式。美国IEEE协会将智能控制归纳为:智能控制必须具有模拟人类学习和自适应的能力。

   「1. 智能控制的概念」

智能控制是控制理论与人工智能的交叉成果,是经典控制理论在现代的进一步发展,其解决问题的能力和适应性相较于经典控制方法有显著提高。由于智能控制是一门新兴学科,正处于发展阶段,因此尚无统一的定义,存在多种描述形式。美国IEEE协会将智能控制归纳为:智能控制必须具有模拟人类学习和自适应的能力。

我国蔡自兴教授认为:智能控制是一类能独立地驱动智能机器实现其目标的自动控制,智能机器是能在各类环境中自主地或交互地执行各种拟人任务的机器。1996年,蔡自兴教授把信息论(information theory,IT)引入智能控制学科结构,在国际上率先提出了图1所示智能控制的“四元交集结构理论”。




图1 基于四元论的智能控制


「2. 智能控制的特点」

传统控制控制方法存在以下几点局限性:

(1)缺乏适应性,无法应对大范围的参数调整和结构变化。

(2)需要基于控制对象建立精确的数学模型。

(3)系统输入信息模式单一,信息处理能力不足。

(4)缺乏学习能力。

智能控制能克服传统控制理论的局限性,将控制理论方法和人工智能技术相结合,产生拟人的思维活动,采用智能控制的系统主要有以下几个特点:

(1)智能控制系统能有效利用拟人的控制策略和被控对象及环境信息,实现对复杂系统的有效全局控制,具有较强的容错能力和广泛的适应性。

(2)智能控制系统具有混合控制特点,既包括数学模型,也包含以知识表示的非数学广义模型,实现定性决策与定量控制相结合的多模态控制方式。

(3)智能控制系统具有自适应、自组织、自学习、自诊断和自修复功能,能从系统的功能和整体优化的角度来分析和综合系统,以实现预定的目标。

(4)控制器具有非线性和变结构的特点,能进行多目标优化。

这些特点使智能控制相较于传统控制方法,更适用于解决不确定性、模糊性、时变性、复杂性和不完全性的系统控制问题。

「3. 智能控制的关键技术」

1)专家控制

专家控制又称专家智能控制,其结构如图2所示。采用专家控制的控制系统一般由以下几部分组成:

(1)知识库。由事实集和经验数据、经验公式、规则等构成。事实集包括对象的有关知识,如结构、类型及特征等。控制规则有自适应、自学习、参数自调整等方面的规则。经验数据包括对象的参数变化范围、控制参数的调整范围及其限幅值、传感器特性、系统误差、执行机构特征、控制系统的性能指标以及经验公式。

(2)控制算法库。存放控制策略及控制方法,如PID、神经网络控制、预测控制算法等,是直接基本控制方法集。

(3)推理机。根据一定的推理策略(正向推理,即从原始数据和已知条件得到结论)从知识库中选择有关知识,对控制专家提供的控制算法、事实、证据以及实时采集的系统特性数据进行推理,直到得出相应的最佳控制决策,由决策的结果指导控制作用。

图2 专家控制基本结构

按照专家控制的作用和功能,一般分为以下两种类型:

(1)直接型专家控制器。该类控制器取代常规控制器,直接控制被控对象。一般情况下,直接型控制器任务和功能相对简单,要求在线工作。

(2)间接型专家控制器。该类控制器用于和常规控制器相结合,实现高层决策功能,如优化适应、协调、组织等。一般优化适应型需要在线工作,组织协调型可以工作在离线。

2)模糊控制

模糊控制是将模糊理论、模糊逻辑推理和模糊语言变量与控制理论和方法相结合的一种智能控制方法,目的是模仿人的模糊推理和决策过程,实现智能控制。模糊控制器包括以下几个部分:

(1)模糊化接口。用于将输入转化为模糊量。它首先将输入变量转化到相应的模糊集论域;最后应用模糊集对应的隶属函数将精确输入量转换为模糊值。

(2)知识库。由数据库和规则库组成。数据库所存放的是所有输入、输出变量的全部模糊子集的隶属度矢量值,在规则推理的模糊关系方程求解过程中,向推理机提供数据。规则库由一组语言控制规则组成,例如IF-THEN、ELSE、ALSO等,表达了应用领域的专家经验和控制策略。

(3)推理机。根据模糊规则,运用模糊推理算法,获得模糊控制量。模糊推理的方法有很多,如MAX-MIN法、模糊加权推理法、函数型推理法等。

(4)解模糊接口。系统的具体控制需求一个精确量,所以需要通过解模糊接口将模糊量转换成精确量,实现对系统精确的控制作用。

模糊控制器的基本结构如图3所示。


图3 模糊控制器基本结构

模糊控制系统的分类有很多种方式,例如按照信号的时特性可以分为恒值和随动模糊控制系统;按照系统输入变量的多少,可以分为单变量和多变量模糊控制系统;按照静态误差可以分为有差和无差模糊控制系统。

虽然模糊控制理论的发展已经历经半个世纪,然而在实际应用层面,模糊控制还存在诸多限制。例如,模糊规则和隶属度函数的建立依赖经验,难以适应复杂系统,亟待进一步完善。

3)神经网络控制

人工神经网络由神经元模型构成。神经元是神经网络的基本处理单元,是一种多输入、单输出的非线性元件,多个神经元构成神经网络。神经网络具有强大的非线性映射能力、并行处理能力、容错能力以及自学习自适应能力。因此,非常适合将神经网络用于不确定复杂系统的建模与控制。由于神经网络本身的结构特点,在神经网络控制中,可以使模型与控制的概念合二为一。

神经网络在控制系统中往往应用于以下几方面:

(1)用于建立被控对象模型,结合其他控制器对系统进行控制。

(2)直接作为控制器替代其他控制器,实现系统控制。

(3)在传统控制系统中起优化计算作用。

(4)与其他智能控制算法相结合,实现参数优化、模型推理及故障诊断等功能。

神经网络控制器一般分为两类:一类是直接神经网络控制器,它以神经网络为基础形成独立的智能控制系统;另一类称为混合神经网络控制器,它利用神经网络的学习和优化能力来改善其它控制方法的控制性能。

4)学习控制

学习控制是智能控制的重要分支,旨在通过模拟人类自身优良调节机制实现优化控制。学习控制可以在运行过程中逐步获得系统预知信息,积累控制经验,并通过一定评价指标来不断改善控制效果的自动控制方法。学习控制算法有很多,如基于神经网络的学习控制、重复学习控制、迭代学习控制、强化学习控制等。

5)智能算法

智能算法是人们受自然界和生物界规律的启发,模仿其原理进行问题求解的算法,包含了自然界生物群体所具有的自组织、自学习和自适应等特性。在用智能算法进行问题求解过程中,采用适者生存、优胜劣汰的方式使现有解集不断进化,从而获得更优的解集,具有智能性。1962年美国Holland教授模拟自然界遗传机制提出了一种并行随机搜索算法,即遗传算法(genetic algorithm,GA),获得成功。经过多年发展,大量优秀的智能算法被广泛应用于各个领域。一些经典智能算法包括差分进化算法(differential evolution,DE)、粒子群优化算法(particle swarm optimization,PSO)、模拟退火算法(simulate anneal,SA)等。

以遗传算法为例,智能算法的应用基本流程如下:

(1)依据问题模型,确定个体的编码和解码方式,建立适应度函数。遗传算法一般采用二进制编码。

(2)初始化。设置种群规模、终止条件和搜索空间等条件,为种群个体赋值。一般情况下,为种群个体进行随机赋值。

(3)个体评价。基于适应度函数计算个体的适应度数值。适应度函数用来评价个体的好坏。

(4)选择。依据适应度大小,选择父辈群体执行遗传操作,适应度越高越容易被选择。

(5)交叉。从父辈群体中随机选取两个个体进行交叉运算,交换基因信息。

(6)变异。为防止群体趋向单一化,导致收敛过快,可以依据概率将个体中某一位基因进行变异运算,获得新种群。

联系我们:135-1272-6426    188-0319-7535

座机:0319-7596975