(7)根据终止条件(如迭代次数)判断是否结束,若没有满足终止条件则返回第(3)步。
「4. 智能控制在智能制造中的应用」
智能制造要求能对制造系统的运行过程进行合理控制,实现提升产品质量、提高生产效率和降低能耗的目标。因此,高水平的控制技术对实现智能制造至关重要。国际上制造业发达国家越来越重视制造系统控制及相关技术的发展,我国虽然起步较晚、基础较弱,但经过近几年的持续攻关与发达国家的差距正在逐渐缩小。目前,国内制造系统控制技术与国外相比仍存在以下几方面差距。
(1)缺乏具有自主知识产权的核心基础零部件研发能力。例如,制造系统核心硬件(如控制器)和软件依赖进口,受制于人;网络化接口技术和标准化不足,导致各种控制单元无法实时进行通信,形成信息化孤岛。
(2)制造系统智能化、数字化、网络化水平较低。以数字化车间、智能工厂、网络协同制造为代表的传统制造业转型升级在全球范围内兴起,国内尚处于跟进与探索阶段。
针对上述问题,国家制造业中长期发展战略规划《中国制造 2025》中强调开展新一代信息技术与制造装备融合的集成创新和工程应用,实现生产过程智能优化控制。智能控制技术的应用,对于提高制造系统的智能化水平以满足智能制造需求具有重要意义。实际上,智能控制技术已经被应用于我国制造业各个领域,取得了显著成果。以下是几个典型的应用方向。
1)智能控制在工业自动化过程控制中的应用
近年来,自动化生产对安全要求越来越高,智能控制的应用可以对生产过程进行检测,发生问题自动报警,且能依据历史信息准确分析问题产生的原因。这样,一方面提高了生产工艺,另一方面也确保了生产人员的安全性。智能控制技术在过程控制中具体应用在以下几个方面:
(1)生产过程信息的获取。传统生产过程信息化程度不高,采用智能控制技术自动获取生产过程的信息并进行分析,可以有效提高信息化程度,基于数据对系统进行自动调整,从而提高生产效率,降低成本。
(2)系统建模和监控。依据采集的数据,利用智能控制技术对生产系统的运行状态进行监控,当出现严重故障时,可以立即停止作业,保护产线和人员的安全。
(3)动态控制。智能控制相较传统控制方法体现出更优异的控制水平。近年来,工业生产中的动态控制不仅包含工艺加工,更是参与了对生产过程的管控。智能控制的应用,为高效动态控制提供了条件,从而实现对工艺生产过程的精确控制。
例如,结合模糊控制和PID控制对石油化工某反应单元的温度进行智能控制,控制对象如图4所示。需要通过控制蒸汽流量,实现对反应器温度的精准控制。传统控制方案采用温度-流量串级控制,然而,由于串级控制存在强耦合,且温度测量和汽包的惯性带来滞后,导致控制效果不理想。因此,可以基于工程师手动控制经验总结出一般控制规则,从而建立模糊规则实现对PID控制器参数的自整定,不仅简化操作流程,也减小了控制上的延迟,提高了温度控制精度。

图4 某反应单元温度控制系统
2)智能控制在机器人控制中的应用
工业机器人被大量应用于工业生产中。近些年,快递行业的兴起使物流机器人、无人机和其他专用机器人也获得快速发展和应用。机器人种类的增多、规模的扩大和任务的多样化极大地提高了控制的要求。传统控制技术存在的缺陷,如无法应对复杂系统、适应性差、不具备学习能力等,限制了其在机器人控制中的应用。智能控制技术能很好地避免这些缺陷,更适合复杂化和多元化的任务要求,并促进机器人的应用。智能控制在机器人领域的应用主要集中在以下两个方面:
(1)运动控制。通过将智能控制与机器人伺服系统相结合,可以实现机器人的高精度定位和对环境的适应。结合柔顺控制算法,可以提高机器人与环境或人交互地安全性。
(2)路径规划和控制。采用智能算法对机器人运动的路径进行优化设计,可有效避免多个机器人的碰撞或干涉。同时,智能算法的应用可以提高机器人运动路径控制的精度。
例如,采用遗传算法规划码垛机器人运动路径。码垛机器人需要将包装物体运送到不同的区域,在复杂的障碍环境下,需要规划一条安全、无碰撞且最短的可行路径。通过建立优化问题模型,采用智能算法可以规避复杂的求解过程,获取高质量的优化结果。这里,通过对特定环境的建模和对适应度函数的设计,采用遗传算法对该路径规划问题进行求解,可以获得最优路径,从而能提升码垛机器人的工作效率,如图5所示。进一步的,通过改进遗传算法中的策略,可以提高收敛速度,获得更平滑的路径。

图5 基于遗传算法的路径优化
3)智能控制在车床控制中的应用
车床被广泛应用于制造领域中。传统控制方法需要人工预设工艺参数,十分繁琐,而且控制精度较低,难以达到预期的控制效果。随着科技的不断发展,制造过程中车床控制开始朝着更智能化的方向发展。将智能控制技术应用于车床,可以提高零件加工的精度、效率和柔性。智能控制技术在车床控制中的应用主要有以下两个方面。
(1)车床运动轨迹控制。车床进给系统存在跟踪误差,特别是当加工面比较复杂时,加工轨迹的突变导致较大偏差,会极大影响控制精度。应用智能控制技术对进给系统进行建模和控制,可以有效降低跟踪误差,提高系统稳定性。
(2)工艺参数优化。机床加工中,切削参数和刀具参数会直接影响零件加工质量、效率和能耗。基于不同优化目标,如加工工时和能耗,设置相应的评价指标,采用智能算法对典型的工艺参数进行优化,能提高加工效率,降低能耗和碳排放。
例如,采用迭代学习控制对车床进给系统驱动轴进行控制,如图6所示。在机床加工过程中,进给系统沿复杂加工面运动时,跟踪误差导致运动轨迹偏离,影响加工精度。基于对进给系统跟踪误差和动力学模型的分析,设计迭代学习更新规律,通过迭代学习时实际位置与期望位置收敛,从而减小跟踪误差。进一步的,可以结合扰动观测器提高控制精度和系统稳定性。

图6 双轴进给驱动系统
「5. 智能控制的未来发展趋势」
随着智能控制技术的发展和在诸多领域应用的日益成熟,在世界范围内,智能控制正成为一个迅速发展的学科,并被许多发达国家视为提高国家竞争力的核心技术。当前智能控制面临的问题及未来发展趋势总结如下:
1)当前面临的问题
(1)应用范围不够广泛。针对一些简单系统,智能控制的优越性相较于传统控制方法并不突出。
(2)实际应用还存在技术瓶颈。许多控制技术还停留在“仿真”水平,未能应用于解决实际问题。在系统运行速度、模块化设计、对环境的感知和解释、传感器接口等许多方面还需要做更多工作。
(3)可靠性和稳定性不足。许多智能控制技术依赖于人的经验,如专家控制。然而如何获取有效的专家经验知识,构造能长期稳定运行的系统是一个重要难题。此外,部分智能控制方法的鲁棒性问题缺乏严格的数学推导,也对控制的稳定性提出挑战。
2)未来发展趋势
(1)多学科交叉融合形成新突破。一方面是智能控制与计算机科学、模糊数学、进化论、模式识别、信息论、仿生学和认识心理学等其他学科的相互促进,另一方面是智能控制领域内不同技术的渗透,如深度学习和强化学习的相互补偿。
(2)寻求更新的理论框架。智能控制尝试实现甚至超越人类智能,既需要结合涉及哲学、心理学、认知科学等抽象学科,又需要基于控制科学、生理学、人工智能等学科,建立更高层次的智能控制框架。
(3)智能控制的应用创新。研究适合智能控制的软、硬件平台,提升基于现有计算资源的控制水平,进行更好的技术集成,以解决智能控制在实际应用中存在的问题。