​​​​​​​智能装备行业门户网
品牌 活动 访谈】  50强   整机 ​【联盟】 机构 【视界 展会 招聘 云服务   微博     关注公众号
咨询热线400-0756-518
今日焦点
​​​金陵智造AGV舵轮
智慧物流,移动机器人全媒体,为更有效传播
​​​INEWS / 新闻中心
移动机器人三维激光 SLAM 算法研究
来源: agv吧 | 作者: agv吧 | 发布时间: 1643天前 | 8997 次浏览 | 分享到:
鉴于移动机器人三维激光SLAM技术的先进性,探讨激光雷达测距与建图算法,以及其两种改进算法:轻量级及地面优化激光雷达测距与建图(LeGO_LOAM)和LOAM的高级实现算法(A_LOAM),尤其对其低漂移、强实时的特性展开深入研究。通过设计对比实验,对不同SLAM算法的优劣进行分析。搭建移动平台,在实际大尺度室外场景和公开数据集KITTI下,从相对位姿估计误差入手完成对比实验。实验结果证明改进算法相比于LOAM可以达到更小的相对位姿估计误差。


[4]ZHANG Ji, SINGH S. Low-drift and real-time lidar odometry and mapping[J]. Autonomous Robots, 2017, 41(2):401-416.
[5] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA. IEEE, 2012:3354-3361.
[6]SHAN Tixiao, ENGLOT B. LeGO-LOAM:Lightweight and ground-optimized lidar odometry and mapping on variable terrain [C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), October 1-5, 2018, Madrid, Spain. IEEE, 2019:4758-4765.
[7] AGARWAL S, MIERLE K. Ceres solver 1.0α tutorial & reference[EB/OL]. (2012-05-01)[2020-08-24]. http://www.scribd.com/document/91987106/ceres.
[8] DUBˊE R, DUGAS D, STUMM E, et al. SegMatch:Segment based place recognition in 3D point clouds[C]//2017 IEEE International Conference on Robotics and Automation(ICRA), May 29-June 3, 2017, Singapore, Singapore. IEEE, 2017:5266-5272.
[9]DUBˊE R, CRAMARIUC A, DUGAS D, et al. SegMap:3D segment mapping using data -driven descriptors [C]//RSS 2018-Robotics:Science and Systems Conference, June 26- 30, 2018, Carnegie Mellon University, Pittsburgh, Pennsyl-vania, USA. [S.l.:s.n.], 2018:20-29.
[10] HESS W, KOHLER D, RAPP H, et al. Real -time loop closure in 2D LIDAR SLAM[C]//2016 IEEE International Conference on Robotics and Automation(ICRA), May 16-21, 2016, Stockholm, Sweden. IEEE, 2016:1271-1278.
[11] DESCHAUD J. IMLS -SLAM: Scan -to -Model matching based on 3D data[C]//2018 IEEE International Conference on Robotics and Automation(ICRA), May 21-25, 2018, Brisbane, QLD, Australia. IEEE, 2018:2480-2485.
[12]BEHLEY J, STACHNISS C. Efficient surfel-based SLAM using 3D laser range data in urban environments[C]//RSS 2018 - Robotics:Science and Systems Conference, June 26-30, 2018, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. [S.l.:s.n.], 2018:147-156.
[13]廖瑞杰, 杨绍发, 孟文霞, 等. SegGraph:室外场景三维点云闭环检测算法[J]. 计算机研究与发展, 2019, 56(2):338-348.
LIAO Ruijie, YANG Shaofa, MENG Wenxia, et al. SegGraph: An algorithm for loop-closure detection in outdoor scenes using 3D point clouds[J]. Journal of Computer Research and Development, 2019, 56(2):338-348.
[14]CHO Younggun, KIM Giseop, KIM Ayoung. DeepLO: Geometry-Aware deep LiDAR odometry[EB/OL]. (2019-02-27)[2020-08-24].http://arxiv.org/pdf/1902.10562.pdf.
[15]LI Qing, CHEN Shaoyang, WANG Cheng, et al. LO-Net: Deep real-time lidar odometry[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),June 15-20, 2019, Long Beach, CA, USA. IEEE, 2020:8465-8474.
[16]DELLAERT F. Factor graphs and GTSAM:A hands -on introduction[EB/OL]. (2012-09-02)[2020-08-24]. http://pdfs.semanticscholar.org/b94f/bf48299d78cd586c057e700763ec09b88f80.pdf
[17]KU咬 MMERLE R, GRISETTI G, STRASDAT H, et al. G2o: A general framework for graph optimization[C]//2011 IEEE International Conference on Robotics and Automation, May 9-13, 2011, Shanghai, China. IEEE, 2011:3607-3613.
[18]ZHANG Ji, SINGH S. Visual-lidar odometry and mapping: low-drift, robust, and fast[C]//2015 IEEE International Conference on Robotics and Automation(ICRA), May 26-30,2015, Seattle, WA, USA. IEEE, 2015:1174-1183.

联系我们:135-1272-6426    188-0319-7535

座机:0319-7596975