[行业新闻] 具身智能产品已商业化落地,市场或达9731......
2025-04-30
[行业新闻] 京东物流智狼出海!首次亮相韩国首尔物流仓储......
2025-04-28
[行业新闻] 开仓即满仓!京东物流连开韩国仁川、利川两大......
2025-04-25
[行业新闻] 里工荣登“人形机器人与具身智能最具投资价值......
2025-04-24
[行业新闻] 全厂(物流)!顺力智能亮相东莞市人工智能产......
2025-04-24
2025-04-23
2025-04-23
[行业新闻] 济南:起步区2026年部署无人快递车100......
2025-04-23
[行业新闻] 唯一中国企业!京东物流斩获中国电子学会自然......
2025-04-22
2025-04-22
[518原创] 518智能装备在线走访蚂蚁侠科技,共......
2025-04-30
[518原创] 盛况直击|镭神智能激光雷达闪耀FAI......
2025-04-26
[518原创] 首届机器人全产业链接会(FAIRpl......
2025-04-26
[518原创] 【4月25日论坛】海康机器人、寻迹智......
2025-04-25
图4 边界条件和网格模型
(3)添加载荷.满载时驱动单元上的等效质量为232.81kg,重力加速度取9.80665m/s².室内平地上运动,选择载荷系数为1.2.载物台上重物放置区内施加载荷2739.7N.车轮与地面接触的摩擦系数选为0.25.先利用无摩擦仿真得出接触面正压力,再在接触面添加等效摩擦力342.5N.
(4)划分单元格.SolidWorks Simulation为保证对各种几何体和面的网格划分的通用性,统一采用一阶四面体、二阶四面体、一阶三角形、二阶三角形进行网格划分,且大量试验保证了算法的可靠性和效率.对于非压力容器的薄板件,在进行网格划分时推荐使用单层二阶四面体进行网格划分结果更优[12-13].故本仿真统一采用二阶实体四面体进行板件和实体的网格划分.总体采用基于曲率的网格,雅可比点数为4点,调整好单元格的精度进行网格划分[14],未细化区域最大单元格为28.5455mm,最小单元格为5.7091mm,增长比率为1.6.
对关注的区域进行单元格的细化.选取应力集中区的零件和边界线:直线轴承、驱动轮轴、动力单元壳体、导轨和动力壳体边线,使用网格控制进行网格划分.
细化部分最大网格为5.11926mm,最小网格为3.35893mm.网格节总数为946585,单元总数为644846.驱动单元模型网格划分,如图4(b)所示.
(5)进行有限元分析.运行有限元解算器进行解算,得出等效应力分布云图,如图5所示.
图5 原系统等效应力分布图
利用Simulation的设计洞察功能以颜色着重显示出应力较大的区域,如图6所示.
图6 应力较大区域
从图6中可以看到,标号1~10处是应力较大区域,11代表上壳体.其平均应力、最大应力、均方根值见图7.最大应力出现在4处,为205.8MPa,而材料的屈服强度为220.6MPa,安全系数仅为1.07.一般车辆设计要求重要部位的安全系数大于等于2.
图7 原系统应力较大区域数据图
驱动单元“L”形悬臂结构引起了过大局部应力,同时,这样的结构会将车体接触处的各个间隙进一步放大,使车轮的“外掰”现象更加明显.
在AGV启停时,有明显的因机构间隙引起的位移,即“空隙冲击”现象,将影响AGV的运动精度.AGV底部实物结构如图8所示.
图8 AGV底部实物结构图
AGV的驱动电机与驱动轮之间靠链传动连接,而链传动在有双向运动时会引起较大的冲击.在非连续运动时,没有二次定位机构的辅助,常常会有“蹿动”,丢失精度.
针对AGV运行中遇到的上述问题,新的机构需要避免车轮的长悬臂和链传动,同时考虑两个驱动轮的间距与干涉,以及成本问题,并要求能对应力状况、可靠性有所改善.
将驱动轮轴由悬臂梁结构改为简支梁的形式,驱动轮轴两端通过轴承与驱动壳体连接在一起.同时,将原有电机改为弧锥直角式中空减速电机,使电机和驱动轮轴直接相连.该连接方式将避免因悬臂结构产生的弯矩,同时省去中间的链传动环节,传动精度、传动效率都有所提高.
AGV运动时沿运动方向上所受的加速度阻力、斜坡阻力、风阻、滚动摩擦阻力和静摩擦提供的驱动力满足方程[15]:
式中:Fk为静摩擦提供的驱动力;Fa为等效加速度阻力;FG为坡度阻力;FR为车轮滚动摩擦阻力;FD为空气阻力;δ为旋转质量的换算系数;m为车体和货物总质量;V为速度;t为时间;α为坡度角,当坡度角较小时有sinα=α;CD为风阻系数;ρa是空气密度,为1.2258kg/m³;A为迎风面积.对小车单个驱动单元的驱动轮进行受力分析可得方程:
式中:Rk为车轮半径;MK为车轮上驱动力矩;FR为车轮滚动摩擦阻力;fR为滚动摩擦系数;G为单个驱动轮上承受的车体和重物的总重力.
通过上式的受力分析,计算出驱动力矩、额定转速、减速比和各传动件、连接件电机参数.通过对设计寿命和传动精度及最大扭矩的要求,计算选择了轴承、键、轴和一些连接件的相应型号[16].
根据设计的加工件和选用的标准件尺寸,建立AGV驱动单元的三维模型.其结构如图9所示.
图9 新型动力单元结构图
驱动单元使用简支梁式直连驱动电机的形式有效避免了驱动单元的整体弯矩,降低了材料应力,进而避免了满载运行时车轮大幅“外掰”问题.由于电机的安装孔可以调节,电机直连的方式并没有让电机承受来自径向的压力,而且这种连接方式提高了传动的精度和可靠度.
为深入研究新机构的应力,现对新驱动单元进行有限元分析.
第六期“全国移动机器人行业巡回调研活动”合作商招募中
报名热线:400-0756-518
活动时间:2023-09-01至11-30
Copyright © 2018-2025, 服务热线 400-0756-518
www.zhineng518.com,All rights reserved
版权所有 © 518智能装备在线 未经许可 严禁复制 【冀ICP备19027659号-2】 【公安备13050002001911】
运营商:河北大为信息科技有限公司