Q9
是否存在您不借助数据就无法发现的情况?未来工厂应该如何发展?
Schultis:我们在一个模块中碰到过这种情况,我们在该模块中用我们的 SICK 传感器 FTMg 监控压缩空气。传感器本身通过一个网关 (TDC-E) 与云端相连。我们将 BPM 托管在该云内,帮助我们对数据进行可视化处理。我们可借此识别压缩空气供应的波动并采取相应的措施。若故障未被发现,就可能导致换向阀故障。我们可以提前对其进行更换,避免停机。
Deep Learning 在未来的工厂中是否也能发挥作用?这是肯定的。Deep Learning 是一种能够以多种方式帮我们变得更好的技术。我们正在开发一个解决方案,有了它我们就能在质量检验中使用神经网络技术。具体来说,这将是一个可内嵌的焊点自动光学检查 (AOI) 解决方案。您看,我们每天都在学习新知识和测试新技术。
未来工厂,必须始于当下,否则未来将永远只是未来。我们今天可以利用机会,借助数据产生增加值,从而尽可能高效地进行生产。