[行业新闻] 具身智能产品已商业化落地,市场或达9731......
2025-04-30
[行业新闻] 京东物流智狼出海!首次亮相韩国首尔物流仓储......
2025-04-28
[行业新闻] 开仓即满仓!京东物流连开韩国仁川、利川两大......
2025-04-25
[行业新闻] 里工荣登“人形机器人与具身智能最具投资价值......
2025-04-24
[行业新闻] 全厂(物流)!顺力智能亮相东莞市人工智能产......
2025-04-24
2025-04-23
2025-04-23
[行业新闻] 济南:起步区2026年部署无人快递车100......
2025-04-23
[行业新闻] 唯一中国企业!京东物流斩获中国电子学会自然......
2025-04-22
2025-04-22
[518原创] 518智能装备在线走访蚂蚁侠科技,共......
2025-04-30
[518原创] 盛况直击|镭神智能激光雷达闪耀FAI......
2025-04-26
[518原创] 首届机器人全产业链接会(FAIRpl......
2025-04-26
[518原创] 【4月25日论坛】海康机器人、寻迹智......
2025-04-25
tim:AGVm执行完任务i时刻;
为实现车间工作效率最大化和物料送达时间误差最小,本文提出智能车间多搬运载体协同作业的两个优化目标,构建完工时间和惩罚成本均最低的多目标优化函数。
minZ=max{Ti} (1)
其中
式中,Ti表示任务i的完工时间,T1i表示堆垛机1开始执行任务i的时刻,Eni表示机械手n执行完任务i的时刻,整体优化目标为最大完工时间最小化。
针对物料送达过程可能出现的提前送达、准时送达和延迟送达三种情况,本文对三种送达情况建立相应的成本惩罚函数,并作为第二个优化目标,如式(5)所示。
minC=min{f(tim)} (5)
其中,考虑到物料运输延迟送达对项目进度的影响损失比物料运输提前送达对项目进度的影响损失更为严重,同时为增强资源配置过程中的柔性[10,11],建立如图2所示的曲线型软时间窗成本惩罚函数。
假设最佳到达的时间窗为[ta,tb],在此基础上,可偏离得到可接受服务时间窗[t'a,t'b],其中,t'a=ta-Δ1,t'b=tb+Δ2。若AGVm在[ta,tb]内将物料送达指定工位,惩罚成本为0;若AGVm在[t'a,t'b]或[tb,t'b]内将物料送达指定工位,只需承担较少的惩罚成本;若AGVm在(0,t'a)或(t'b,∞ )内将物料送达指定工位,则需要承担较多的惩罚成本。基于曲线型软时间窗的成本惩罚函数如式(6)所示。
图2 基于曲线型软时间窗的惩罚成本函数
式(6)表示在曲线型软时间窗的约束下,AGVm执行完任务i的时刻tim所对应的惩罚成本。如图2所示,若AGVm在t'a时刻之前送达,单位时间所需承担的惩罚成本为cp1,同时还需要承担[t'a,ta]时间段所产生的惩罚成本;若AGVm在[t'a,ta]时间段内送达,单位时间所需承担的惩罚成本为cp2;若AGVm在[ta,tb]时间段内送达,惩罚成本为0;若AGVm在[tb,t'b]时间段内送达,单位时间所需承担的惩罚成本为cp3;若AGVm在t'b时刻以后送达,对应的单位时间所需承担的惩罚成本为cp4,同时还需承担[tb,t'b]时间段所产生的惩罚成本。
式中,α和β为提前送达和延迟送达的成本惩罚权重,分别取值为0.1和0.8[12]。
其中,式(7)表示任何时刻一台堆垛机只能被分配一个任务;式(8)表示任意时刻同一任务只能被分配给一个加工工位;式(9)表示两台相位相冲突的AGV不能同时通过路口;式(10)表示每个任务在同一时刻只能由一台AGV执行;式((1)表示每个任务在任意时刻只能分配给一个堆垛机;式(12)表示机械手开始处理的时刻不得早于AGV将物料送达机械手所在交接点的时刻:式(13)表示任务被完成的时刻;式(14)表示只有在堆垛机将物料卸载在交接点后,AGV才能开始执行任务;式(巧)表示每台AGV待执行的任务需依次排序执行:式(16)表示参数的非负限制。
路口碰撞可分为相向冲突、路口冲突和节点占用冲突三种[13]。传统路口避碰为题大多赋予AGV不同级别的优先级,按优先级高低依次通过,单次只能通过一辆AGV[13]。本文研宄中,为使AGV避碰环节更贴近实际,AGV在行驶过程中经过某交叉路口时,根据传感器和RFID采集的数据,分析当前路口的通行情况和路口AGV行驶信息,通过检测每辆AGV的行驶方向,判断多辆AGV的是否可同时通行,并对相冲突的AGV进行优先级调整,使路口可同时通行多辆AGV,有效减少等待时间和碰撞情况的产生。
AGV行驶临近交叉路口时,根据传感器和RFID采集的数据,控制系统对AGV位置和时间状态进行更新,检测并分析在即将驶入的路口是否会发生冲突及其冲突类型。
检测中参数定义如下:
1)λbm为表示AGVm到达节点h的时间;
2)εhm为表示AGVm在节点h的停留时间;
3)θ为表示冲突检测时的安全时间间隔阈值;
4)Kmh为节点h的识别码,且该节点在AGVm的规划行驶路径中;
5)Kmh-1<Kmh<Kmh+1为AGVm通过的节点顺序。
冲突检测模型如下:
1)相向冲突
若检测过程中满足以下关系式(17)、式(18)、式(19),则AGV在路口将发生相向冲突。
2)路口冲突
若检测过程中满足以下关系式(20)和式(21),则AGV在下一路凵将发生路口冲突。
3)节点占用
若检测过程中满足以下关系式(22)和式(23),则AGV在下一路口将发生节点冲突。
第六期“全国移动机器人行业巡回调研活动”合作商招募中
报名热线:400-0756-518
活动时间:2023-09-01至11-30
Copyright © 2018-2025, 服务热线 400-0756-518
www.zhineng518.com,All rights reserved
版权所有 © 518智能装备在线 未经许可 严禁复制 【冀ICP备19027659号-2】 【公安备13050002001911】
运营商:河北大为信息科技有限公司