[行业新闻] 具身智能产品已商业化落地,市场或达9731......
2025-04-30
[行业新闻] 京东物流智狼出海!首次亮相韩国首尔物流仓储......
2025-04-28
[行业新闻] 开仓即满仓!京东物流连开韩国仁川、利川两大......
2025-04-25
[行业新闻] 里工荣登“人形机器人与具身智能最具投资价值......
2025-04-24
[行业新闻] 全厂(物流)!顺力智能亮相东莞市人工智能产......
2025-04-24
2025-04-23
2025-04-23
[行业新闻] 济南:起步区2026年部署无人快递车100......
2025-04-23
[行业新闻] 唯一中国企业!京东物流斩获中国电子学会自然......
2025-04-22
2025-04-22
[518原创] 518智能装备在线走访蚂蚁侠科技,共......
2025-04-30
[518原创] 盛况直击|镭神智能激光雷达闪耀FAI......
2025-04-26
[518原创] 首届机器人全产业链接会(FAIRpl......
2025-04-26
[518原创] 【4月25日论坛】海康机器人、寻迹智......
2025-04-25
如图3所示,AGVm行驶至交叉路口时,每辆AGVm均有gs、tl、tr三种行驶方向的可能性,分别代表直行、左转、直行,在路口设置互容和不容两种通行相位,处于互容相位的多辆AGV可在不碰撞的情况下同时通过,处于不容相位的多辆AGV不能同时通过路口,(假设路口的转弯半径可同时容纳两辆互容相位的AGV同时通过)。比如AGVtrm1则表示AGVm1在路口右转,则与AGVtlm2、AGVtrm2、AGVtrm3、AGVgsm2、AGVtrm4、AGVgsm4是互容相位,可同时通过路口,与AGVgsm2、AGVtlm3、AGVtlm4是不容相位,不可同时通过路口,其通过路口顺序需根据优先级调整确定。
图3 AGV在路口的冲突相位图
在交叉路口处于不容相位的AGV,为保证各AGV之间有明确的优先关系,通过赋予AGV优先级来确定通路口的先后顺序,其依据是根据理论上AGV完成正在执行任务的剩余时间,值越小,则AGV优先级越大,不同的优先级以增幅A来确定,若是空载车辆,优先级则设为最低。
其中:
式中,rest(Ti)表示任务i的剩余完工时间;Number(k)表示当前路口排队不容相位排队通行的车辆数。
为减少双路口之间路径的堵塞现象,当AGV即将抵达双路口路径时,在检测交叉路口冲突情况的同时,检测双路口之间路径堵塞情况,评估当前是否可以进入该路径而不造成堵塞,如图4所示,评估标准为路径剩余可容纳的车辆数:
N(s)=F[ s ]-Y(s) (25)
图4 双路口路径容量检测示意图
式中,N(s)为路径s的剩余可容纳的车辆数;F(s)为路径可容纳车辆的额定容量,取值向下取整;Y(s)为路径s中己进入的车辆数;ls为路径s的长度;
lAGVm为AGVm的长度,θ为行车过程中的最小安全距离。
当N(s)<1时,将禁止AGV通过交叉路口,等待直至有AGV从路径驶出。
PSO是Kennedy和Eberhart受鸟群群体运动的启发于1995年提出的一种新的群智能优化算法[14],通过粒子间的信息共享,协作完成寻优任务,具有记忆性强、效率
高和搜索速度快等特点,但易陷入局部最优,即局部寻优能力强,全局寻优能力弱[15]。本文对粒子群算法进行优化,采用动态惯性权重和引入遗传算法中的自适应变异概率,避免算法后期陷入局部最优,提升算法的收敛能力和收敛精度,算法流程如图5所示。
图5优化自适应粒子群算法流程图
设求解模型的维度为D维,有1个粒子,粒子群为L={p1,p2,…,pi,…,pl}速度表示为V={v1,v2,…,vi,…,vD},位置表示为X={x1,x2,…,xi,…,xD},pbesti表示粒子i经过的最佳位置,gbesti表示所有粒子经历过的最佳位置。PSO算法的粒子i的第D维速度更新公式为式(27),粒子i的第D维位置公式为式(28):
式中,vkid表示粒子i进行第k次迭代时速度矢量的第D维分量;vkid表示粒子i进行第k次迭代时位置矢量的第D维分量;c1,c2表示学习因子加速度,其值为常数;r1,r2为取值范围为[0,1]的两个随机参数;w表示惯性权重,取值非负,用来调节对解空间的搜素范围。
惯性权重表示粒子i的先前速度对当前速度的影响。全局寻优能力与其值成正比,局部寻优能力与其值成反比;反之,粒子局部寻优能力强,全局寻优能力弱。即,值过大,则容易错过最优解;值过小,则算法收敛速度慢或是容易陷入局部最优解。当问题空间较大时,为了在搜素速度和搜索精度之间达到平衡,故本文采用动态惯性权重式(29),使算法在迭代初期有较高的全局搜索能力以得到合适的种子,而在后期有较高的局部搜索能力以提高收敛精度,随着迭代次数地增加,w不断减小,进而使算法在初期有较强的全局收敛能力,而后期有较强的局部收敛能力。
式中,wmax表示最大惯性权重;wmin表示最小惯性权重;t表示当前迭代次数;tmax表示算法最大迭代次数。
在算法迭代初期,种群个体的差异性较大,为避免产生不良解,同时为使算法快速收敛,应以较小的概率进行变异。在迭代后期,种群个体多样性逐渐降低,为避免算法陷入局部最优[14],应以增大个体的变异率。
式中,Pmmin表示最小的变异概率,取值为0.01;Pmmax表示最大的变异概率,取值为0.1。t表示当前的迭代次数;tmax表示最大的迭代次数;Di表示粒子i到当前最优解的欧氏距离;Dmax表示种群中离当前最优解最远的粒子i的最大欧氏距离。
第六期“全国移动机器人行业巡回调研活动”合作商招募中
报名热线:400-0756-518
活动时间:2023-09-01至11-30
Copyright © 2018-2025, 服务热线 400-0756-518
www.zhineng518.com,All rights reserved
版权所有 © 518智能装备在线 未经许可 严禁复制 【冀ICP备19027659号-2】 【公安备13050002001911】
运营商:河北大为信息科技有限公司