品牌  【直播】  50强   整机  ​【联盟】  机构  【视界】  展会  招聘  云服务          微博   公众号AIrobot518 
【​今日焦点
【行业动态】
NEWS / 新闻中心
AGV 常见减震浮动结构对比分析
来源: agv吧 | 作者: agv吧 | 发布时间: 1796天前 | 5539 次浏览 | 分享到:
AGV 广泛应用于物流、制造业、安防巡检等领域,AGV 所使用的环境层面范围越来越广。如在制造业中使用,AGV 需要在两个以上的车间来回行驶,室内外的场景切换势必对 AGV 的环境适应性要求有所增加。在面对应用场景范围的扩大,AGV 的路面适应性能也愈加重要,目前,AGV 的减震浮动型式也各有不同。本文通过列举目前 AGV 常见的减震浮动结构类型,加以研究分析其减震的特性,以对 AGV 的悬挂浮动系统设计提供特性分析以及理论参考。

随着我国的制造业转型升级步伐的加快,机械自动化代替人工劳动力也成了当今的重点。相比以前,如今的物流及物料搬运形式已逐渐地由传统人工搬运转为智能自动搬运形式,AGV 已是目前国内制造业应用最广泛的搬运机器人之一。
AGV最早源于仓储物流,其中的应用环境条件比较良好,并且AGV的应用场地也有相关的标准定义。随着智能物流的飞速发展,AGV现已涉足制造业、港口搬运、安防巡检等领域,应用的领域范围扩大意味着运行场景的复杂度提升,因此,AGV的适应性能也应当提高。作为AGV的适应结构之一的减震浮动结构,目前,其结构形式繁多,对于不同的 AGV 底盘形式、承载量,减震浮动结构也不同。本文通过列举目前AGV 常见的减震浮动结构形式,加以研究分析其减震的特性,以对AGV 的悬挂浮动系统设计提供特性分析以及理论参考。


此时,驱动轮与地面的作用力FN1'为:
FN1 = (Δ+λ-δ)·nk
λ > δ

图3 凹陷路面时的弹簧形变量


相比平地路面和凹陷路面,弹簧形变量减少,则驱动轮负载变小而辅助轮负载变大。由于凹陷路面的工况频率低于平地路面,即辅助轮的大负载工作时间较短,
此时,辅助轮负载处于其极限负载范围内即可(如该工况频率较高,则须处于额定负载范围内),则减震浮动结构在承载上须满足:
FN1' ≤ Fmax1'
FN2' ≤ Fmax2'
FN2' = f(FN1',G)
式中,FN2'为凹陷路面上辅助轮的支承力;Fmax2'为辅助轮的极限负载;f(FN1',G)关于FN1'和G的方程式,轮系结构的不同,其计算方程也不一样。
在驱动轮附着力Ff'上须满足:
Ff' > Fq
Ff' = FN1'·μ1
(3)凸起路面。在凸起路面中,由于路面外凸将驱动单元的减震弹簧压缩,理论上减震弹簧的压缩量会大于平地时的弹簧压缩量。但如果弹簧在压缩过程的弹力已经足以支承 AGV 整体的重量时,那么,弹簧不再压缩,而是如同刚性连接一般将AGV整体顶起。如上述分析,此时,弹簧压缩量最大,因此驱动轮的负载最大。
为保证所有轮子共同着地,应保证凸起压缩弹簧时,弹簧的弹力不会将AGV整体支承起来,则驱动轮与地面的作用力FN1"须满足:
FN1" = (Δ+λ+δ)·nk
2FN1" < G [caption id="attachment_478" align="aligncenter" width="382"]

图4 凸起路面时的弹簧形变量[/caption]
凸起路面中,此时,驱动轮负载最大,辅助轮的负载最小。由于凸起路面的工况频率依然低于平地路面,驱动轮仅短时间承受大负载,所承载的负载处于其极限负载范围内即可。则减震浮动结构在承载上须满足:
FN1" ≤ Fmax1'
FN2" ≤ Fmax2'
FN2" = f(FN1",G)
式中,Fmax1'为驱动轮的极限负载;FN2"凸起路面
上辅助轮的支承力;f(FN1",G)关于FN1"和G的方程式,轮系结构的不同,其计算方程也不一样。
(4)综合条件。综合上述(1)、(2)、(3)3种工况下的条件,减震浮动结构需要满足的综合条件如下:
对于上述的综合条件,每项条件都可如上述分析构建起相关弹簧刚度的方程式以及范围不等式,通过刚度的多个范围条件,可确定出弹簧刚度在满足所有条件
下的取值范围。那么,在用于减震浮动结构的弹簧的刚度应当处于该取值范围内。

图5 减震浮动结构的综合条件

3  AGV 常见减震浮动结构

(1)铰接摆动式。铰接摆动式浮动结构是应用较多的一种减震结构,如图6所示,驱动轮与安装座固定并与车体形成铰接,则驱动单元与车体间可绕铰接点1旋转摆动,实现上下方向的浮动。通过在驱动单元与车体间设置弹簧减震装置,利用弹簧力来决定驱动单元的摆动幅度。

图6 铰接摆动式详细结构图


图7 铰接摆动式结构的受力图


该类结构的驱动轮支承力与弹簧反力间存在力臂的关系(如图7所示),在需要获得一定的驱动轮支承力下,实际弹簧所需的弹力比驱动轮支承力更小。然而,浮动量刚好相反,在驱动单元需要获得一定的浮动量时,弹簧的压缩量需要比驱动单元浮动量的更大。
基于上述特性,铰接摆动式浮动结构比较适用于大载荷、空间充足的AGV轮系布局上。力臂有效减小弹簧所需的刚度,但对摆动空间具有一定的要求。

图8 铰接摆动式结构的双向差异性


当AGV在坡道中行走时,其坡道方向如图8的上图所示,其驱动轮支承力与摆动铰接点间力臂长度相比另一方向(图8的下图)的要短。在弹簧的压缩量一定时,即弹簧反力一定下,图8上图的驱动轮支承力更大,在AGV负载较大时,应当注意验算驱动轮载荷是否处于额定范围内。
(2)垂直导柱式。垂直导柱式浮动结构是通过驱动轮与安装座固定,安装座中设置有导套与导杆形成移动副,导杆上设置有压力弹簧的一种减震结构。驱动单元通过导柱导套副实现上下浮动,压力弹簧在垂直方向上给驱动单元提供竖直的反力。

图9 垂直导柱式详细结构图


该结构应当合理布置导柱与驱动轮间的位置关系,如图10所示,为避免因力分配不均匀的原因导致导柱与导套间产生力矩,应将两导柱相对驱动轮触地点居中布置。若导柱没有居中放置,两边的弹簧反力并不相等,造成反力较大一端压缩量较多,反力较小一端压缩量较小,此时,导柱与导套间必然会产生力矩使移动副发生卡滞。
为进一步防止导柱与导套间发生卡滞,如图11所示,两导柱的中心连接线应处于驱动轮宽中心。如图12所示,当两导柱的中心连接线偏离驱动轮宽中心时,驱动轮的支承力与弹簧反力间存在力矩的力臂,在导套与导柱的配合面上必定产生对顶力,使移动副发生卡滞。

​​​​第六期“全国移动机器人行业巡回调研活动”合作商招募中

​报名热线:400-0756-518​​​​

活动时间:2023-09-01至11-30

  • 旷视接待21国驻华使节 共探智慧城市新机遇
  • 优必选与东风柳汽签订人形机器人采购合同,已收到预付款
  • 受邀参加央视《赢在AI+》,九曜智能亮相2050大会
  • 破解具身智能"数据困局"!松灵发布具身数据服务方案
  • 亮相LogiMAT China!磅旗科技携医药全场景AI无人化方案圈粉无数!
  • 安森美:AMR移动机器人一站式解决方案供应商,站在“巨人的肩膀上”平地高楼起
  • 大模型技术助力交管智能升级,海康威视亮相第十五届交博会
  • 天链机器人亮相成都工博会 以创新科技驱动产业升级