​​​​​​​智能装备行业门户网
品牌 活动 访谈】  50强   整机 ​【联盟】 机构 【视界 展会 招聘 云服务   微博     关注公众号
咨询热线400-0756-518
今日焦点
​​​金陵智造AGV舵轮
智慧物流,移动机器人全媒体,为更有效传播
​​​INEWS / 新闻中心
【物流】邱伏生:智能供应链在智能制造领域的应用
来源:物流技术与英语 | 作者:物流技术与英语 | 发布时间: 1617天前 | 12106 次浏览 | 分享到:
目前中国制造业正处于转型升级的阶段,智能制造成为中国制造业迈向全球的制胜关键,而智能制造必须要有智能供应链作为保证。本文主要介绍了智能供应链在智能制造领域的五个方面典型应用,包括智能化研发设计、供应链需求预测和计划、智能化采购与供应商协同等等,并提出智能制造需要以智能物流作为前提和基础,越来越多的智能制造工厂将智能制造设施嵌入到智能物流系统中,成为流水线化物流系统的一个不可缺少的环节和部分。

  智能工厂中的智能物流系统能够高效、准确、稳定地完成重复性工作,保证过程品质一致均衡。随着人与机器在产品装配过程中的交互更加紧密,不同的生产环节可通过操作人员(或者人工智能控制的机器人),按照定制产品的需要来使装配流程做出改变。更可以通过系统仿真,针对每个订单、每个物料、每个工位验证生产和物流的工艺流程,从虚拟连接现实世界,具体运作过程中可以是通过一个虚拟订单,看到工厂里的各种设备,通过仿真发现瓶颈并反馈信息,进行实时调节;当实际订单当运行时,协同不同的工厂模块,就可以反馈到监控/优化软件模块。

  5.智能供应链保障生产能力和过程可视化,提高过程的偏差管理和自我协同和调整能力

  智能供应链需要保证信息-物理系统(CPS)的一致性,从而减少执行过程中与计划或标准的偏差,保证企业级的“知行合一”。但是,在实际运作过程中,难免存在各类变数带来的过程偏差甚至瓶颈,偏差如果不能实现过程的可视化,瓶颈容易长期积累形成隐患,当其爆发时,往往导致供应链的“掉链子”,其后果轻则造成停产或者断供,重则可能为企业带来莫大的风险甚至灾难。

  智能供应链在保证过程一致性的同时,需要建立过程偏差场景设定、识别和响应流程,更需要设定变数预警、瓶颈和风险识别、应急预案和应急物流管理模式。

常见偏差场景如:停电、设备故障导致的停产、配送过程中堵车、翻车、大批量不合格、火灾、台风、地震及其他灾害、由于环保问题带来的停产整顿、工人罢工、信息标签丢失、容器具损坏、检验不及时、模具损坏、总装不合格、货损等。针对上述可能产生的风险,需要有应急培训和实施演练,以避免实际情况的发生。

  在智能制造中,这些供应链过程的可视化、偏差管理、实时应对问题显得越来越重要。否则,再好的智能制造工厂和设备都无法有效协同运行。

  传统供应链管理过程中,可能有偏差数据的统计和可视化通知,通知的对象是操作团队或者监控团队,但是,往往不能保证偏差数据抓取、通知的实时性和真实性,从而难以保证应对的及时性和有效性,导致供应链系统的累积误差;比如,供应商端出现了诸如翻车、批量不合格、停电等因素导致的问题,主要是通过打电话、发传真(而不是系统)等方式告知管理人员;仓库端如果找不到物料,通过人工当面沟通或者对讲机通报;制造端如果设施故障导致计划变更,通过开会或者对讲机沟通……都无法保证全过程的数字化和数据化,更无法给后续相关环节以足够的时间应对,容易导致无法交付、无法追溯、无法查询。

  智能供应链偏差管理,是通过智能化的数据抓取方式,直接通过系统传递给关联系统或者智能设施,“看”偏差数据的可能不是人,而是整个供应链系统,实时的进行有效反馈和处理,形成自组织、自反馈、自调整的职能运作体系。以下案例能够说明偏差管理的逻辑和应急管理可视化的升级路径。

  H企业位于某市近郊,交通便利、环境宜人,其有效使用面积近10万平方米,拥有五个仓库和三个零部件、总装分厂,分布于厂房的三个楼层。日最高产量达30000台,每天24小时连续运转,平均每分钟可生产20.83台;5条生产线同时生产,则每条线每分钟可生产4.16台。

  按照该产品的品牌形象和市场上对该产品的需求以及该厂现有的各项资源,该企业的生产节拍期望值应可提到5台/分钟(即每天可生产3.6万台,潜在总资源占20%)。为了追溯制造潜力的约束瓶颈,随机抽取了任意两周的停线时间作为研究对象,发现供应链运行状况可以描述为:生产设施的高效率运转所带来的物料消耗与各类物料无法按照生产计划有效配送到工位达成安定生产之间的矛盾。由于供应链协同不均衡、信息不共享、数据逻辑与KPI指标考核不一致,从而造成生产上的瓶颈现象,降低了供应链整体系统的价值链传递效率,造成很大浪费。

  二、制造企业智能供应链存在的瓶颈分析

  制造企业在智能供应链方面存在的瓶颈主要表现在以下6个方面:

  1.供应商到采购方没有形成数字化管理

  包装的差异导致无法形成数据化管理。运输容器没有实行标准化,有各类各样的具有供应商明显特色的容器,不利于企业内部标准化管理,也不利于物料与容器的颜色管理和定置管理与及物流现场的整理整顿;影响了采购管理落实的有效性。

  数量的差异导致物料流动无法数字化管理。包装单元数量不统一、不严格按生产需求送货(通常,为了保证用量,都有多送的余量,加上盘点的不及时,增加了供方的管理与仓库的成本;不能进行运输的直达化管理,即门对门管理),人工清点与数据交换费时、费力,更容易造成系统中的积累误差;即使偶尔有使用条码的也无法保证数据的准确性,最后只好扫描送货单了。影响数据管理的有效性。

  物料流动时间的差异无法保证计划-执行的一致性,KPI指标难以监控。由于没有按照采购方既定的到货计划送货,使得供应商日供货不明确、不及时、不合顺序,导致无法到货或者到货无效,最后使各工序缺料等待;同时,对于供应商进货的规划与调度中,可能出现同时超标到货的现象,造成现场拥挤。据该企业资料统计,该厂在当地便有500多家供应商,每天送货大卡车最多时达30多辆,平时同时到达的有8-10辆(也有时空场),而卸货现场面积和卸货能力决定每次最多可同时卸货4-5辆大卡车,最后导致加班等计划外作业。

  供应商质量差异导致直通率无法达成。由于质量的问题常使总装线停产,甚至总装后试机时,发现品质不良,只好作为不合格品另做处理,增加了生产环节的负担。

  2.相关物理功能区域未做区位数字化管理,现场管理混乱

  卸货区未做区位管理。拥挤现象很严重,成了事实上的库存暂存区,各类材料在卸货区停留时间过长,客观上造成对卸货本身的干扰。

工序之间各暂存区流动性失控。见缝插针式的无序存放,暂存容器的不统一、不规范(甚至许多物料根本没有必要的容器),导致存货不能顺利进出(需要的货物在最里面),更不能先进先出(FIFO),造成实际生产中时空上的矛盾,如钣金件存放区,甚至在一些区域出现存放多日的不良品部件,而且经常存放在加工区的运输要道上,阻碍了物料的顺利流转。

  区域之间物料周转缺乏参数设置和管理。各分厂、库暂存区重复设置现象严重,但又不能统一管理与运输、调度,导致(人工+叉车)重复运输和迂回运输,使配送无序。各分厂的区域分割、物料分散堆放,又由于配送与物流管理上的不均衡,使空间周转不过来,如产品的下线问题、固定工艺的运转周期与下件存放使用的时间差问题、运输过道与运输方式的问题等(尤其是电梯的使用与管理不合理),造成各楼层间物流的瓶颈现象(通常被称为“线边库存”)。

  总装线区域物料上下作业岗位时序失控。配送节拍跟不上,所需物料不能从各厂、区、库及时、准确配送到位,且配送的物料质量难以保证;不需物料(如调产后的零配件、空工位器具、不良品)不能及时运走或处理,造成线上物料拥挤与亏缺,使生产不准时、物流不均衡。

  3.生产保障过程的信息流紊乱,人、机、料、法、环无法形成联通与互动

  全厂信息传递和数据维护的现代化程度很低,部门间以定单方式交流,信息传递易失误,沟通、处理不及时;物料周转又未单元化,使高效率的物料运转、巨大的数据量与低效、易错的人工操作之间存在错位(如成品包装线与成品库间的数据交换完全由人工点数完成,常出现数据不统一或盘点延迟的现象)。

  该企业还曾经花巨资导入了多台AGV搬运小车和工位机器人,但是都由于智能化设施无法与实际的流程、物料、上下环节的人工、叉车实现无缝对接和联动,导致最后全部撤换。比如AGV将物料配送到工位了,作业人员尚未完成上个物料的装配,AGV直接放下物料进入了下一个作业;反之人工完成了,AGV尚未到达,导致人工停产;工位机器人经常由于物料未能够按照作业计划到达指定位置,导致静止等待、闲置;或者物料包装的工位器具未能够按照机器人属具的抓取模式设计,导致机器人无法争取抓取物料进行装配,导致乱抓物料或者无法识别物料。

联系我们:135-1272-6426    188-0319-7535

座机:0319-7596975