​​​​​​​智能装备行业门户网
品牌 活动 访谈】  50强   整机 ​【联盟】 机构 【视界 展会 招聘 云服务   微博     关注公众号
咨询热线400-0756-518
今日焦点
​​​金陵智造AGV舵轮
智慧物流,移动机器人全媒体,为更有效传播
​​​INEWS / 新闻中心
【物流】邱伏生:智能供应链在智能制造领域的应用
来源:物流技术与英语 | 作者:物流技术与英语 | 发布时间: 1571天前 | 11794 次浏览 | 分享到:
目前中国制造业正处于转型升级的阶段,智能制造成为中国制造业迈向全球的制胜关键,而智能制造必须要有智能供应链作为保证。本文主要介绍了智能供应链在智能制造领域的五个方面典型应用,包括智能化研发设计、供应链需求预测和计划、智能化采购与供应商协同等等,并提出智能制造需要以智能物流作为前提和基础,越来越多的智能制造工厂将智能制造设施嵌入到智能物流系统中,成为流水线化物流系统的一个不可缺少的环节和部分。

  产品构成和来源是需求预测和计划的基础,它决定了企业如何进行销售预测的合并和分解,达成全价值链的预测共识。智能供应链以此为起点,然后通过物联网和大数据(包含数据化的历史经验)对于全渠道流通流量的模拟与仿真,做出基本面上的初步预测和引导,然后与大型客户和关键渠道与合作伙伴对其包含的变数信息作进一步的修改和调整,结合营销团队的工作计划中的关键节点(比如大型促销活动、重要节假日等),从而使得需求预测和供应链资源计划能够与内外活动保持同步。当然,需求预测和相应的生产、物流计划,不再是人工编制或者独立的计划模块编制,而是立足于全价值链运作的(人工智能化)协同系统主动完成。

  智能供应链体系通常会评估每一个产品的产品生命周期并进行持续跟踪,预测产品数量的递减和递增,以确定其进入和退出市场的节拍和方式。引入新产品必须综合上一代产品的供应链过程中的库存和采购渠道中的半成品及零部件数量。从而保持产品的新鲜度和减少新老产品的市场冲突,保持消费者的满意度和忠诚度。

  智能供应链系统中拥有完整的跨企业智能预测和供应链资源计划工作流程,在物联网环境下协作的各方能及时准确地传送需求信息。于是预测可以从供应链的任何一个环节发起,从而促发所有环节的实时响应,即供应商可以给客户发出一个基本预测以便客户在此基础上作回应,也可以是客户先提供一个对基本面的预测然后让供应商作出评估。除了预测信息,关于销售速度、消费者现场体验满意度、库存水平和补货需求等方面的信息同样可以通过大数据的方式在企业和客户间沟通传递。由此也减少了供应链中不同环节采用囤积库存以弥补信息不灵通造成的影响,大大降低了效率损失和运营风险。

  即使在智能供应链环境下,各个环节难免受到各类变数的影响而产生动态调整,而影响需求预测和计划的正常进行,需求分析既要最大程度的减少预测错误同时又要充分考虑需求的变数,一般需要设置应急模式和自我修正、调整的缓冲模式。依据产品形态、工艺路径、客户需求、交付和结算模式的不同,反应缓冲保护区的设置也就不同。正因为如此,表现出来的生产和物流计划也会相应的有所区别。

  由于智能供应链大大降低了产品研发周期,互联的智能制造工厂也是实时生产,在智能物流的配送下,消费者获得产品和服务的时间,能够比传统供应链缩短30%~50%,大大提高了供应链的响应能力和消费者满意度。由于订单到交付时间的缩短,反过来提高了预测的准确性和计划的有效性。

  3.智能化采购与供应商协同到货

  在传统的运营中,各个部门并不是在高度认同的供应链战略和价值导向下运作,同时,鉴于采购业务是整个供应链体系中最晚得到供应信息,却是最早需要提供物料,以保障和支持安定生产,于是由于各类运营过程中差异和风险的存在,容易导致无效供应(还需要面临库存降低压力),从而事实上难以保证生产的正常运作。由于没有实现数字化协同,所以各类变数无法在同一时间传递给所有环节,导致供应链敏感度下降,最终各个环节只能依靠经验(即所谓“拍脑袋”)来做安全库存,以应对变数,随着管理变数的层级增加和时间延长,累积误差自然随之加大,到最终形成了“库存冰山”,反而掩盖了所有的问题。在这种情况下,各个环节KPI指标无法在同一个逻辑上兑现和协同,于是容易产生职责推脱和部门壁垒,供应链一体化自然也就无法实现。

  智能化采购中,要求所有的流程必须拉通,其运作战略是基于高度认同的一个供应链战略协同下开展,各个部门和环节的KPI指标也是基于供应链战略绩效的协同和分解而来,于是所有的参数和指标都在同一个逻辑下展开,形成数字化的作业单元,由于有了智能供应链协同中心,得以将所有环节的计划-执行-信息-物流等串联起来,形成端到端的纵向管理体系,同时,由于每个订单、每个物料(产品)都有自己的资源要求,容易导致资源再分配计划,所以,供应链运作部门还需要将不同运作逻辑的物料和订单横向协同起来,最终形成互联互通的供应链体系。

  这就要求采购方在选择供应商伊始,就要求供应商能够与采购方实现软件互联互通,运营时更是要求实时可视、预警和协同。比如采购方(智能工厂)的计划和预测需要直接传递给供应商的主生产计划系统,供应商的发运计划必须与采购方的作业计划系统对接,先期发运通知(ASN)需要由软件系统完成,而没有人工的参与;并且要求全过程必须条码化(或者采用RFID技术),对交接货物时的标签和信息都有严格和统一的规定。

  从运作逻辑而言,就是通过信息平台,承载所有的模块联动,以供应链交付计划为驱动力,联动成品物流计划,形成主生产计划、细化为作业计划,从而拉动供应物流计划、物流配套计划以及产线工位配送计划。在不同的环节和模块协同过程中,总是会出现各类执行误差和数据差异,那么智能化系统需要自我反馈、逐渐主动减少运作误差,从而形成计划-信息-执行的一致性,如图1。

从表现形式上而言,形成了“计划—采购—物流—信息”一体化;其任务的本质不再是保证供应,而是有效供应。

  比如,假设某产品有A、B、C、D、E、F六个零部件,其采购到货周期分别为A5天、B10天、C15天、D20天、E25天、F30天,生产计划本月1号提示,本月30号需要生产某个产品,传统的采购“保证供应”,直接在1号之后就下了订单,供应商也“按照要求”准时交付,能够在约定的交付周期内到货,于是效果如图2。

  图2中阴影区域就是库存,而这个部分通常就直接进了采购方的仓库。此时,采购完全达成了其业务的KPI指标,能够保证生产,而库存压力居高不下,管理成本随之上升。但是,由于利益诉求的不同,买卖双方往往不愿意承担库存成本的压力,加上盘点和信息管理的时间—数量差异,形成了累积误差,于是成了供应链上巨大的瓶颈。

  在智能化采购中,通常采用计划倒排模式,形成精益化、数字化采购,以保证采购-到货的有效性。如图3所示。

  图3中所示为主生产计划在1号发出提示,而在30号正式生产,根据各自不同的交付周期,进行倒排,强调实物齐套,以有效保证生产的安定化。图中阴影部分为相对于传统采购带来的收益。此时不是以采购业务KPI指标为唯一依据,而是协同作业计划、到货计划、实物齐套情况以及可能发生的过程差异(比如考虑质量有效性)进行实时监控和响应,形成“计划—信息—采购—物流—生产”的一体化。

  在实际采购业务中,先期的主生产计划发布之后,企业供应链计划协同平台根据各个环节的运营参数进行细分,排布详细的作业计划(包含制造作业计划、配套作业计划和物流作业计划),然后进行人工或者自动化作业,过程中追踪差异和变数。如图4是某典型企业数字化采购详细作业计划。

  图4中所示为某物料执行数字化采购以支持精益生产的作业计划倒排表,从上往下为计划的倒排逻辑,从下往上为实际采购及入厂物流运作过程(蓝色区域为采购业务与入厂作业计划)。

  在通常的运作中,各个环节通过扫描条码或者RFID感应进行过程数据的收集,以实时形成计划达成率(采购计划达成率、供应方到货计划达成率、入厂物流计划达成率等),如果该过程中出现运营规则和计划要求的标准之外的偏差和变数,系统将自动抓取该数据,进行实时分析和应急。

  但是,在智能供应链中,上述逻辑通常不出现在操作界面中,实际的运作界面大多数情况下是某个具体的指令或者需求信息,如图5是某典型企业数字化采购的简单界面(人们称之为“一张纸”one page模式)。

联系我们:135-1272-6426    188-0319-7535

座机:0319-7596975