品牌  【直播】  50强   整机  ​【联盟】  机构  【视界】  展会  招聘  云服务          微博   公众号AIrobot518 
【​今日焦点
【行业动态】
NEWS / 新闻中心
基于差速驱动的AGV驱动单元分析与改进设计
来源: agv吧 | 作者: agv吧 | 发布时间: 1629天前 | 6918 次浏览 | 分享到:
商用自动导引车(AGV)通常采用链传动机构进行动力传动,其车轮的固定结构可以视为悬臂式结构.因此,容易发生驱动轮“外掰”和启停“冲击”问题,这限制了AGV在频繁和快速加速或减速过程中的精确运动.本文以某公司设计的AGV为例,通过反复试验和数值模拟,从结构和受力分析入手,找出了产生这种现象的原因:驱动单元的“L”形悬挂机构引起了较大的应力,使各个零部件的接触间隙放大;链传动机构的使用使AGV在频繁启停或正反向运动时,容易在链轮和链条之间形成间隙.之后从工程角度提出了新的驱动单元结构,解决了上述问题,同时大幅减小了机构中的应力,提高了传动精度,为AGV的设计提供了一种更实用、更优化的驱动结构.

摘要

商用自动导引车(AGV)通常采用链传动机构进行动力传动,其车轮的固定结构可以视为悬臂式结构.因此,容易发生驱动轮“外掰”和启停“冲击”问题,这限制了AGV在频繁和快速加速或减速过程中的精确运动.本文以某公司设计的AGV为例,通过反复试验和数值模拟,从结构和受力分析入手,找出了产生这种现象的原因:驱动单元的“L”形悬挂机构引起了较大的应力,使各个零部件的接触间隙放大;链传动机构的使用使AGV在频繁启停或正反向运动时,容易在链轮和链条之间形成间隙.之后从工程角度提出了新的驱动单元结构,解决了上述问题,同时大幅减小了机构中的应力,提高了传动精度,为AGV的设计提供了一种更实用、更优化的驱动结构.

  •  1.2.1 静应力预测
  •  1.2.2 有限元分析
  •  1.2.3 结果分析
  •  2.1.1 方案设计
  •  2.1.2 选型设计

目录

0 引言

随着我国人工成本的逐渐升高,对产品质量,自动化、柔性生产的要求提高,商用自动导引车(AGV)[1]作为智能制造和柔性生产的关键环节,因其能实现高效、经济、灵活的无人化生产,广泛应用于工厂自动化生产线、仓储物流、机场和港口的物料传送[2-3].
近年来,国内外研究人员对AGV的结构和运动进行了大量的研究.王殿君等通过四轮差速原理,运用ADAMS软件分析了AGV转弯过程[4].刘国刚通过ANSYS仿真,对AGV车架进行了轻量化设计[5].夏田等通过建立AGV的静力学和动力学模型,采用Matlab/Simulink建立了仿真模型并仿真了一个驱动轮静止另一个转动的运动方式[6].刘治华等通过疲劳理论,采用ADAMS和NCODE分别对轨道车飞碟游乐设备的驱动轴进行了动力学和疲劳仿真分析,并得出驱动轴的寿命云图[7].
笔者以某公司设计的一款悬臂结构、链传动的AGV为例,研究驱动轮“外掰”和启停“冲击”的问题.该AGV的工况为:8小时工作制,用于轴承内外圈自动化生产线上将码垛完成后的轴承内外圈及托盘,转移到智能仓储的对应入口处,然后返回等待托盘再次装满,如此往复.其中轴承内外圈及托盘总重量为168kg.AGV平均循环周期为42min.工厂路面为环氧地坪漆.笔者通过反复试验和建模仿真分析的方法,确定了“外掰”及“冲击”的原因,提出了一种新的结构,且对新机构进行了校核.从结构应力,传动效率和精度上进行对比分析,验证了新机构的合理性.

1 问题分析

1.1 结构与现象描述

该AGV车身长600mm,宽500mm,高300mm,为差速驱动、六轮布局形式,结构如图1所示

图1 AGV整体结构图


小车车体总质量为57.15kg,最大载重量为200kg,驱动单元部分质量为24.34kg,最大运行坡度5°,最大运行速度1m/s,运行方向为双向.
小车车身与从动轮直接连接,和驱动单元通过弹簧和导轨滑块连接在一起.这样驱动轮始终着地,防止因制造误差或地面不平坦导致打滑,造成小车运动失真,且有减震[8]的作用.
由于AGV小车壳体侧面板不可拆卸,故将AGV小车空载置于高于地面的平台上,在车轮外侧面与地面处固定一角尺作为参照标尺.然后在AGV车身上逐渐加载200kg重物,通过观察车轮外侧面与角尺间的间隙变化进行试验.观察到满载时,驱动轮与地面接触处因受力而向外倾斜,即驱动轮“外掰”,如图2所示.

图2 “外掰”现象示意图


试验时将AGV断电侧翻放置,用较小力拨动驱动轮时,车轮在一定的范围内转动,但驱动电机并未产生相应转动,而是链轮轮齿在链节距的空隙中晃动.在AGV启停时会出现因机构空隙产生的明显冲击,即启停“冲击”.针对上述现象,分别从结构受力和传动机构特点进行分析,找出导致该现象的原因,并提出了新的驱动单元机构.

1.2 静力分析

1.2.1 静应力预测

由材料力学知识可知:AGV驱动单元是一个“L”形的悬臂结构,如图3所示,将在接触点A处、B处和C处形成较大的应力集中[9].为进一步确定应力较大的区域,现进行有限元分析.

图3 驱动单元受力示意图


1.2.2 有限元分析

(1)简化模型和定义材料.本机构用SolidWorks Simulation进行有限元仿真分析[10-11].为保证结果可靠,将模型中不影响受力的部分进行简化,只保留驱动轮轮轴、驱动单元壳体、圆柱导轨和与之接触的壳体进行有限元分析.材料的弹性模量为210GPa、密度为7800kg/m³、屈服强度为220MPa,选择普通碳钢材料.
(2)设定边界条件.小车重力完全施加在驱动单元上,故为分离出的驱动单元添加平面约束,使其只能沿竖直方向运动.添加弹性支撑代替车轮.与直线轴承相接触的直线导轨添加“接触”约束.动力壳体与直线轴承之间的弹簧用“弹簧”来代替.效果如图4(a)所示.

​​​​第六期“全国移动机器人行业巡回调研活动”合作商招募中

​报名热线:400-0756-518​​​​

活动时间:2023-09-01至11-30

  • 旷视接待21国驻华使节 共探智慧城市新机遇
  • 优必选与东风柳汽签订人形机器人采购合同,已收到预付款
  • 受邀参加央视《赢在AI+》,九曜智能亮相2050大会
  • 破解具身智能"数据困局"!松灵发布具身数据服务方案
  • 亮相LogiMAT China!磅旗科技携医药全场景AI无人化方案圈粉无数!
  • 安森美:AMR移动机器人一站式解决方案供应商,站在“巨人的肩膀上”平地高楼起
  • 大模型技术助力交管智能升级,海康威视亮相第十五届交博会
  • 天链机器人亮相成都工博会 以创新科技驱动产业升级